by Bradley Fischer
Updated 09 September 2003
Background
The United States Navy and Imperial Japanese Navy both utilized standard analog mechanical ballistic computers during World War II for most of their cruiser and battleship applications. The USN utilizing the Mark 8 rangekeeper for all World War II construction as well as numerous pre-war and refit construction while the IJN using the Type 921 Shagekiban 2 for the following calibers: 41 cm, 36 cm, 20 cm, and 15.5 cm; the calibers utilized in most IJN heavy cruiser and battleships.
Fundamentally, both achieve the same task: calculating future target position and generating gun orders to hit the target ship utilizing available input from such sources as the director, rangefinding equipment, gyros etc. there, however, the similarity ends as both navies’ pursued different philosophies. The USN with greater resources and a long firmly established independent industrial base was able to develop a very advanced fire control system that was highly automated. The IJN by contrast, had a much younger industrial base and fewer resources to draw upon and thus their fire control system had to rely much more on large group of operators to accomplish the same task.
Systems Overview
The US Navy had several fire control systems in use during World War II, however most share the same general characteristics as the most modern system used by the US Navy’s battleships, the Mark 38 Gun Fire Control System (GFCS). This system is centered on the Mark 8 rangekeeper that is the heart of its operation and is used to compute various data such as target, gun orders, director train, time of flight etc.; all the necessary data to hit a moving target. The components that fed information into the Mark 8 rangekeeper were:
The Mark 8 utilized this information to generate the following orders
to the guns via electrical output directly:
The Imperial Japanese Navy utilized a different system which was
based upon information and techniques practiced by the British Royal Navy.
This data was passed on to the Japanese during the interwar period.
The components that fed information into the Type 92 Shagekiban
computer were:
The output values from the Type 92 Shagekiban computer are
added differentially to director setting and training. Afterwards,
parallax, roll and cross roll corrections are added and the orders are
sent to the guns via a follow the pointer system. 7
US Navy Mark 8 Rangekeeper
The Ford Mark 8 rangekeeper is a descendent of the original Mark 1 rangekeeper of the First World War and constituted the state of the art analog mechanical computers for the USN during the Second World War. Operated by a single individual, the panel of the instrument has three distinct sections:
Graphic Plotter
The automatic plotter is used to graph range vs. time (delta R, range rate) as well as spot corrections and salvo times and is well suited for post engagement analysis.
Main Panel
This panel contains the main displays and dials:
Side Panel
This section contains the auxiliary dials and displays:
Operation
The Mark 8’s two primary controls for tracking a target are the Target Course and Target Speed knobs. With these two the operator can more easily adjust the “solution”. Before the operator can begin tracking a target, he must input an estimated target course and speed which he gets from CIC or one of the aloft directors. In addition there are some other variables to be inputted manually:
After these are entered, the operator can then begin to receive
direct input from the Directors, stable verticals, pitot log, and gyros
compass. Below is a listing of data received electrically or mechanically
in automatic mode: 9
Once the operator has set up the rangekeeper, and the director and
radar have acquired the target, the operator can now track and build a
solution on the target. The primary method of tracking is called rate control.
This is a method where the operator compares generated range and bearing
rates with observed range and bearing rates from the director and radar/rangefinders.
As stated above, on the main panel there are numerous displays representing target and own ship course and speed as well as bearing and range rate dials. 10 The latter are more important in determining the accuracy of the solution while the former are important for adjusting the target course and speed. While it takes practice and a good knowledge of vector mathematics, the basic principal behind this operation is to compare what the rangekeeper predicts the range and bearing rates are versus what the director and radar are observing; from experience the operator can then adjust the target course and speed to quickly null out the discrepancies between the observed and generated values. The operator can see the error as both generated as well as observed values have their own separate colored needle or pointer on the respective displays, thus the operator merely has to match the needles much like a follow the pointer system for gun laying.
A interesting feature of the Mark 38 GFCS and the Mark 8 rangekeeper is the ability for the system to operate in a closed loop, thus providing automatic feed back to quickly correct the variances in generated vs. observed values. One method is for the director itself to operated in generated mode where by the director automatically follows the target from training orders produced by the rangekeeper and the trainer only has to make corrections using his hand wheel as needed to track the target precisely. His corrections then modify observed deflection rate (director train) showing as an error on the deflection rate dial.
In addition, with the advent of the Mark 8 Mod 2 radar in late 1943,11 the radar range unit receives the generated range rate from the rangekeeper that controls the range line 12 on the radar display automatically. The rangekeeper operator has an auxiliary 3 inch (7.62 cm) scope that he monitors and, as he observes the range line separating from the base of the target pip, he can then modify the target speed and course to regain a proper track and thus maintain an accurate solution. As an additional duty to tracking the target, the operator applies spot corrections in both range and bearing that he receives orally from the primary spotter or gunnery officer.
While the tracking process is going on, the Mark 8 rangekeeper is constantly
producing gun orders directly to the turrets via synchroes for automatic
gun laying. It is important to understand that this is a continuous process,
even if few ranges were added manually, the instrument is constantly developing
gun orders. It is because of synchronous transmission and the stable vertical
that USN warships effectively had fully stabilized guns for firing in most
weather conditions or sea states.
Type 92 Shagekiban Analog Computer
The Aichi Clock Company first produced the Type 92 Shagekiban Low Angle analog computer in 1932. The most noticeable difference between the USN Mark 8 and the Type 92 Shagekiban is that the latter cannot perform all of the tasks of the USN Mark 8 by itself. Where the director and stable vertical in the USN Mark 38 GFCS are devices to gather data for the Mark 8, the Type 92 Shagekiban must rely on the Hoiban Director, and Sokutekiban to assist in making the necessary calculations. The Type 92 Shagekiban’s panel is arranged for the 7 operators particular needs, and can be broken down into three basic sections:
Graphic Plotter
The plotter has a similar use and function to the American system however it differs in that it also depicts bearing change vs. time (bearing rate).
Range Averaging Panel
This section is used by the operator to select best ranges from the various rangefinders.
Main Panel
This panel contains the heart of the panel and contains the following displays: 13
Operation
The Hosen Shiki Sochi (LA fire control system) is much more dependent on the operation of the Director than is the US system and essentially the functionality of the USN Mark 8 rangekeeper is split up between the Type 92 Shagekiban and the Type 94 Hoiban director along with its associated Type 92 Sokutekiban. The operation of the Shagekiban is therefore interrelated with its supporting instruments to a much larger degree than the USN rangekeeper.
The Shagekiban receives range information from the rangefinders and target course and speed information from the Sokutekiban. After receiving this information, the Shagekiban now has enough information to generate gun orders. These are then transmitted back to the director where calculations are made for roll in the line of sight, cross roll for elevation and train, and parallax. Once that is done, the director transmits the orders to the guns via a follow the pointer.
Type 92 Sokutekiban
The Sokutekiban is a device that is unique to the Imperial Fleet and has no equivalent to any other navy. Mounted aloft on the control deck, two decks down from the director, 14 this instrument is operated in a similar fashion to a director and is used to determine the target’s course and speed for the Shagekiban. The instrument requires an eight-man crew to operate, whose duties are as follows:
The instrument has two methods by which to calculate course and
speed. The first is when the inclinometer is used to measure target course17
relative to own course. With the course established the speed can
be solved; this is calculated with the formula (R + delta R)
× sin delta B, 18 where:
R is the new range to the targetIf the target’s length is not known with enough confidence, then the calculations for course must be accomplished together with the afore mentioned velocity calculation. This is done using rate integrals along with a constant time mechanism to properly space the time of readings. 19
delta R is change in range
delta B is change in bearing
Now that the target’s course and speed have been calculated, they are
sent down to the Shagekiban for calculation of future target position.
Type 92 Shagekiban
The operation of the Type 92 Shagekiban computer is very similar to the operation of the Sokutekiban and requires a 7-man team to operate it, organized as follows:
The operation of the Shagekiban computer is broadly similar
to the operation of the Mark 8 rangekeeper, however, the Shagekiban
requires much more manual input and includes no less than 7 operators vs.
the one operator for the Mark 8. One important feature present in
this Japanese computer that is not in the American instrument is the range
averaging section. This section contains a dual pointer dial and
indicating lamp, which is illuminated when there is a malfunction with
the rangefinder it serves.
Inside the dial, there is a range receiver, a mean range receiver and a range transmitter. The range receiver receives the signal directly from the rangefinder to which is serves. The transmitter transmits that same signal to the range averaging unit, while the mean range receiver receives the signal from the range averaging unit. On the face of the dial there are two pointers, one for the range signal from the rangefinder, and one of the mean range.
The operator uses these to observe patterns in the rangefinders that are feeding data to the Shagekiban. With these, the operator can eliminate as many as he sees fit if he feels they are unreliable or are not producing “honest ranges”. The range averaging unit now sends its only output signal directly to the mean range receiver where it is one operator number 2’s job to match his pointer with the average range pointer that he received from the range averaging unit.
The operators now track the target using the following follow the pointer:
This method is different than in the USN method of rate control,
where the operator can observe errors in the fire control solution by observing
variances between generated and observed range and bearing rates.
On the Shagekiban, the operators are merely inputting data or transmitting
data via their pointers, thus there is no way of gauging the accuracy of
the solution.
The data is now transmitted in the form of elevation and deflection orders directly to the Type 94 Hoiban. The Hoiban on all Japanese warships serves as the primary control station for the battery and it is from here that the final calculations are added and the guns are fired. The operation of the director is similar for most directors of the era with the exception having a higher manning requirement.
One operator not found in the USN Mark 38 Director has the duty for
correcting for the movement of the ship along with parallax error. This
operator task uses follow the pointer of the received elevation and deflection
orders. His instrument in the director automatically calculates the
corrections for roll, cross roll and parallax. In addition, some ships
received gyro installations that could be manually followed up at the director
for use at night or obscure horizon 20.
Conclusion
It should come as no surprise that the newer USN Rangekeeper, and for that matter the Mark 38 GFCS, has an edge in operability and flexibility. The US system has the ability to operate in a closed loop fashion allowing the plotting room team to quickly identify target motion changes and apply appropriate corrections. The newer Japanese systems, particularly the Type 98 Hoiban and Shagekiban on the YAMATO class were more up to date, this system eliminated the Sokutekiban, and however, it was based on the same philosophy and still relied on 7 operators.
This is not to say that the Japanese systems were inaccurate, certainly the IJN demonstrated their gunnery proficiency during the Guadalcanal campaign, just perhaps not quite as flexible. They did, however, have more points for the introduction of inadvertent errors. Relying solely on optical range finders, lack of gyro for an artificial horizon, and manual follow-ups on the Sokutekiban, Shagekiban, Hoiban as well as guns themselves. Those types of errors tended to manifest themselves as battle wore on and crews became fatigued. This was a problem for both USS MASSACHUSETTS21 and HMS DUKE OF YORK at Casablanca and North Cape, respectively. This could have played a role in Center Force’s battleships dismal performance off Sumar in October 1944.
Notes
1 “Type 92” denotes model year, or more appropriately, when the design for the device was started. The year is according to the Imperial Japanese calendar, but subtracting 60 can convert this to the last two digits of the year. Thus the Type 92 Shagekiban was designed in 1932, while the Type 94 Hoiban was designed in 1934.
2 Shagekiban – Low Angle Computer
3 The Mark 38 director, unlike the Mark 34 for cruisers, is unable to generate any gun orders in an auxiliary or back mode. The turrets, however, do have Mark 3 rangekeepers that function in a similar manner to the Mark 8 and can take in data from operable directors and radars.
5 Sokutekiban – Quoting from Naval Technical Mission to Japan: “There is no good English equivalent for the name of this device. The instrument is designed to provide transmissions of target speed and target course to the L. A. table (SHAGEKIBAN). In appearance it is somewhat like a director and has to be laid and trained like a director.”
6 “Super Elevation” is the angle that the gun must be elevated above the line of sight to compensate for the curvature of the trajectory caused by the force of gravity acting on the projectile.
7 Naval Technical Mission to Japan: Ordnance Targets O-31, pg 13
8 The purpose of the spot correction during the set up phase is to correct for variations of the range tables, in this case cold gun correction as well as an arbitrary ballistic correction. The latter is a table devised by the gunnery department from previous firings to correct for indeterminate errors in the fire control system. After the first salvo, the cold gun correction is typically removed.
9 In an emergency or due to a cut off in electrical or mechanical link, the listed inputs can be added manually.
10 The target and own course dials are grouped together and the pointers are shaped like ships in order to enhance the operator’s situational awareness. In addition, on the own ship dial, there is an additional pointer depicting the observed relative bearing of the target.
11 The Mark 8 Mod 2 radar is really a modification of the Mark 8 Mod 1 where by most of the controls are relocated from the director in to the main battery plot. A nice feature was the Mark 3 Mod 1 range transmitter that automatically sent radar ranges into the Mark 8 Rangekeeper.
An interesting historical side note is that the Mark 8 Mod 2 radar began as a field modification on board the USS NORTH CAROLINA and USS WASHINGTON in November 1943. The results were so encouraging that Bureau of Ordnance developed a modification kit for existing Mark 8 Mod 1 radars that was issued to the fleet in June 1944. There is evidence that these field modifications to convert to the Mod 2 continued as USS INDIANA describes her Mark 8 in a radar spotting report dated April 1944 as “Modified Mark 8 Mod 1”. In the report she summarizes the new capabilities that are exactly those of the Mark 8 Mod 2, this predates the Mod 2 kits by almost three months in availability.
12 The range line is the pointing device of the radar display and is where the actual ranges are generated from in the B scope plan view presentation.
13 Each display has an associated crank for use by the operator to input the proper data. Note this is one of the great differences between the Japanese and American units, the American unit is much more automated with most of the data automatically inputted.
14 This author has the bridge diagrams for KONGO and HURUNA and it is clear from these diagrams that the Sokutekiban installation has a restricted arc of train limited to roughly 300 degrees.
15 Apparently the Type 92 Sokutekiban receives its bearing rate data from either the Shagekiban (which in itself comes from the director) or the Hoiban director. It also is not clear as to why this information is needed if the instrument is tracking the target itself.
16 It is not clear where the ranges are received from. This author believes that they are received from the Type 92 Shagekiban after the range-averaging operator has selected the best range.
17 If the target’s length is known as well as the present range, the operator measures apparent length of the ship in the form of a bearing measurement (using the stern as the reference point). The formula is: inclinometer angle = L × Cos Ø / R, where: L is the length of ship, Ø is target angle and R is present range.
18 The entire formula is (V Cos Ø - V Sin ß) × t = (R + delta R) * Sin delta ß, where Ø is target angle, ß is the bearing angle and R is present range, delta R is the change in range and delta ß is the change in bearing angle over the period t. Target angle Ø is assumed to be constant over the period t. The delta R term is often expressed in yards/minute and/or knots: 333 yds/min or 10 knots.
19 The formula used when the inclination is not known is (V Sin Ø - V Cos ß) × t = R + (R + delta R) × (1 + Cos delta ß). It is used in conjunction with the formula in Note # 18.
20 Apparently the IJN gyro development was not too advanced and the gyros that were installed in IJN vessels were neither accurate nor reliable.
21 USS MASSACHUSETTS
had not yet received her receiver regulators for her turrets, thus they
had to operate in “follow the pointer” mode for the entire engagement.
Her receivers were not installed until she returned to the yard after the
end of her participation in the invasion of North Africa.
Bibliography
General Works
Campbell, John 1985, Naval Weapons of World War Two, Conway Maritime Press, LTD
Friedman, Norman 1983, US Naval Weapons, Conway Maritime Press, LTD
Sumrall, Robert 1989, Iowa Class Battleships: Their Design,
Weapons and Equipment, United States Naval Institute Press
Official Publications
US Navy Bureau of Ordnance Publications:
Bulletin of Ordnance Information, No. 3-44
Bulletin of Ordnance Information, No. 4-44
Bulletin of Ordnance Information, No. 1-45
Fire Control Equipment, Fire Control Radar, Mark 8
Source Book of US Naval Radar, 1947 Chapter 13 and 17
US Navy Technical Mission to Japan, Ordnance Targets O-31, Japanese
Surface and General Fire Control
Internet Pages
Eugene Slover Navy Pages @ http://www.eugeneleeslover.com/
These pages are copies of NAVAL ORDNANCE AND GUNNERY VOLUME 2 FIRE CONTROL,
Prepared by the Department of Ordnance and Gunnery United States Naval
Academy. Edited and produced by the Bureau of Naval Personnel NavPers
10798-A 1958.
.