战列舰

 找回密码
 登上甲板
搜索
楼主: seven_nana

Nathan Okun大口径舰炮穿深表

[复制链接]

下士

十二年服役纪念章旗手

发表于 2013-1-11 17:13 | 显示全部楼层
你说的美式穿甲弹是14英寸的,而真正得到特别强化的还是那群一票Mk6和Mk7当主炮的新式战列舰家族,使用的16英寸超重弹,真正得到大幅度加强的是它们,而它们的弹药也是水平向破坏力为设计宗旨的,这就和14英寸不同了,所以说对于美国来说战时特别强化以至于专门开发的硬度较高的战列舰主炮弹基本都是新BB用的
而且这图里日军穿甲弹似乎没标明口径,看那样子几乎就是8英寸以下级别的,毕竟有资料说战列舰主炮级别的似乎有不亚于美国同类的风帽硬度,但91系列自弹体开始存在差距
同时日本海军武器揭秘也提到实际91和1的水中弹性能似乎也没有到特别异于常人以至于让美军调查者特别注意的地方,倒是提及和别国常见同类区别似乎不大

下士

十二年服役纪念章旗手

发表于 2013-1-11 17:16 | 显示全部楼层
而且那块183毫米厚度的样本几乎也是用非常规方式测量,就是第一次射击较早期炮弹,测试一次后为了对比优质ClassA和KCNA,同时后两者的厚度都明显超过那块特殊VH,尤其是德国样本,而最后等于183毫米板材挨了相当于别的同等级同类几乎一倍的炮弹
而且美国人对比测试的第一次使用的己方装甲质量似乎也和第二次有差距

中将

十二年服役纪念章TIME TRAVELER一级铁十字勋章元老荣誉纪念章行政立法委旗手终身荣誉会员

发表于 2013-1-11 17:26 | 显示全部楼层
Type94 发表于 2013-1-11 17:13
你说的美式穿甲弹是14英寸的,而真正得到特别强化的还是那群一票Mk6和Mk7当主炮的新式战列舰家族,使用的16 ...

炮弹越小,越容易热处理。所以如果图中91式是8寸以下,恐怕14-18寸的硬度就更堪忧了。
我认为这图是涵盖了14寸以及以上的。

中将

十二年服役纪念章TIME TRAVELER一级铁十字勋章元老荣誉纪念章行政立法委旗手终身荣誉会员

发表于 2013-1-11 17:28 | 显示全部楼层
Type94 发表于 2013-1-11 17:16
而且那块183毫米厚度的样本几乎也是用非常规方式测量,就是第一次射击较早期炮弹,测试一次后为了对比优质C ...

看编号,似乎说明美国7.6寸的装甲也经过了多次射击。

下士

十二年服役纪念章旗手

发表于 2013-1-11 17:32 | 显示全部楼层
对比测试的美式样本似乎不是那一块,后来似乎换了一块。
其实如同美国人特别加强新战舰主炮的特用穿甲弹一样,专心与穿甲弹性能提高发挥远距离破坏力的日本也类似,如果说口径的区别带来的问题可能更多还是集中到91系列的弹体,而弹头硬度则是特别加强,毕竟是战列舰,考虑日本巡洋舰对炮战专一程度并没有战列舰那么高,这也不是没可能

中将

十二年服役纪念章TIME TRAVELER一级铁十字勋章元老荣誉纪念章行政立法委旗手终身荣誉会员

发表于 2013-1-11 19:10 | 显示全部楼层
Type94 发表于 2013-1-11 17:32
对比测试的美式样本似乎不是那一块,后来似乎换了一块。
其实如同美国人特别加强新战舰主炮的特用穿甲弹一 ...

与自己以前的弹相比加强了,不能证明就达到或者超过了英国德国炮弹的水平。
美国在1945年前用的MK8 1-5型的炮弹,性能算不上好。所以你说的日本炮弹硬度不亚于美国炮弹也并不能用来证明它达到或者优于英德炮弹。
相反,链接计算表格中,美国日本炮弹的表现也可以说是接近的,这与现有的各种资料和说法并不矛盾。

欧肯对于装甲和炮弹的研究肯定比你我多,所以没有确凿无疑的矛盾之处的话,无法证明这套数据是错误的。

下士

十二年服役纪念章旗手

发表于 2013-1-11 19:29 | 显示全部楼层
但对比下406毫米1225公斤级别超重弹的内部装药,明显相对较小,而欧洲列强战列舰的主炮弹装药量高很多,如果结合美国海军开发该弹药和新式主炮的初衷,那似乎就只有一个解释了,适当牺牲内部装药满足弹体强度。
所以美国人45年之前使用的炮弹,或许16英寸以外的,对比欧洲同类,不算好,但16英寸级别的,特定该口径的超重弹,属于例外,也就是被特别强化的,而日本炮弹里同样有针对性的强化战列舰级别主炮的炮弹强度,而且日本人的改进型1式穿甲弹也做了一系列强化,尤其是弹头和弹体,而欧肯的对比标明为91穿甲弹,但结合史实,日本海军主要战列舰在太平洋开战后就换装了1式,所以如果是以1式为发射弹药测试,结果还难说。
日美炮弹表现相对接近恐怕未必如此,就水平向而言,美式超重弹不是3年式能比的,而且同为日本舰炮,对于部分项目测试长门局部有超过大和的得分,就更背离事实了,同时德国方面的火炮也存在此类问题。更主要的问题则在于英国老式381毫米的某些穿深居然可以局部超过Mk7,这就更和常识不符,而且就某些型号的火炮或者装甲,例如德国人的406毫米或者日本人的大型舰炮,由于第一时间多半被毁以及后来没有第一现场射击测试,说他彻底了解也可能存在问题,而装甲的问题亦然,考虑表现区间,就得采集所有各不同类别进行同厚度同条件测试,而显然部分装甲样本和样本质量并不理想,而这些最先天条件如果出现系列问题,那么他的推算不可能没影响

上尉

十二年服役纪念章一级铁十字勋章元老荣誉纪念章终身荣誉会员

发表于 2013-1-11 19:44 | 显示全部楼层
留名,拜读中。

中将

十二年服役纪念章TIME TRAVELER一级铁十字勋章元老荣誉纪念章行政立法委旗手终身荣誉会员

发表于 2013-1-11 19:53 | 显示全部楼层
本帖最后由 克虏伯火炮 于 2013-1-11 19:55 编辑

弹体强度再高,圆弹头的也不利于穿透装甲。
MK8 1-5的弹头是圆的,与上图中14寸炮弹外形很像。
圆弹头的好处似乎是不易发生跳弹。在炮战时,很显然击中甲板时的通常大于击中垂直装甲时的法向交角,所以从这个角度来说这炮弹也是以击穿甲板装甲为第一目的。
而日本炮弹,既然你也说了91式炮弹不如1式,那么94有“拙劣”的表现又有什么值得大惊小怪的?
你说3年式有个别数据超过94?我看的不细没看见。在哪里?
德国15寸和16寸的问题确实是这套数据中让人无法理解的,暂时算是我们要推翻这套数据的“铁证”之一。
至于你质疑欧肯不了解包括德国16寸和日本94等炮,以及装甲的问题,我认为这不能作为证据。炮的问题不大,毕竟有炮弹和炮口参数就行,用计算机或者相关数学方法模拟,误差可以做到很小。装甲的问题确实有影响,但欧肯可是研究了很多装甲的,这些装甲都“不理想”的概率太低了。
举个例子,信浓装甲性能不好的事情,很快不也知道了?

我的召唤术有效,巴掌露面了,快留住

上尉

十二年服役纪念章一级铁十字勋章元老荣誉纪念章终身荣誉会员

发表于 2013-1-11 20:05 | 显示全部楼层
本帖最后由 巴掌 于 2013-1-11 20:08 编辑

补充一点,相同动能和构造的穿甲弹,直径越大穿甲能力越低,这可以用来支持德国15寸和16寸的现象。但是德国16寸的炮口动能也比15寸大不少,小弹径优势是否真有那么大,我还无法判断。

再补充一点,不仅是动能和弹径,穿甲体外形和质量也对穿甲能力有较大影响,相较于美国和日本炮弹,德国炮弹的穿甲体外形是最尖利(也是最硬)的,所以相同动能和弹径下的穿甲能力更强,这与我原先的估计一样。

下士

十二年服役纪念章旗手

发表于 2013-1-11 20:08 | 显示全部楼层
但是还有个问题,发射同样的超重弹,在Mk6的测试中很显然垂直方向不佳以至于没有和欧洲列强的380毫米级有差距甚至被某型号超越甚多但水平惊人,世界一流不用说,倘若美国的406毫米主炮如此,也就罢了,但偏偏Mk7发射同样的弹药,垂直威力几乎判若两人,当然,倍口径提高,初速的提高是很重要因素(美国方面最初就判定,以Mk7或者Mk2这样50口径的406毫米主炮发射1225公斤超重弹,可以和457毫米Mk1抗衡的垂直威力,而该测试中很无厘头的成了部分项目上老Mk1也有优势)
正因为91不如1,所以该测试中几乎将94最终定论明显不妥,尤其考虑到1式换装的时间甚至处于战争较早期,和Mk8系列穿甲弹又不同。
炮也还是该有大量各项对应系数,而很多炮因为各种因素只留下残破样本,无法开火毕竟和其他数据留存较多的其他有过射击靶标测试的炮不同(而且综合几个因素,例如94,日本人的穿深方面对应速度和角度恰又侧面吻合的方式说明了可能的真正穿深,这就比单纯计算似乎更详尽些)。装甲也是同理,各国的A类钢发挥其最佳的厚度不同,那么就必须将该国可能的此类装甲在各个厚度的样本(合格样本)集齐,但研究的这些国家的样本,难免出现某个型号某个国家的较少而基于这少量样本测试就不如另一种大量样本反复测试的效果了

信浓那个有些还有待研究,但炮塔那个几乎是辟谣,同时证明了183毫米样本不是单纯算日本人的成果,而是有德国影子结合进去才会如此BT

中将

十二年服役纪念章TIME TRAVELER一级铁十字勋章元老荣誉纪念章行政立法委旗手终身荣誉会员

发表于 2013-1-11 20:32 | 显示全部楼层
本帖最后由 克虏伯火炮 于 2013-1-11 20:40 编辑
Type94 发表于 2013-1-11 20:08
但是还有个问题,发射同样的超重弹,在Mk6的测试中很显然垂直方向不佳以至于没有和欧洲列强的380毫米级有差 ...


这套数据只是具体某炮、具体某种弹的计算结果,而并不是给某种炮定性。
之前我也表明了炮弹对穿甲有显著影响这个观点。就是说,相同的炮,甚至相同的弹重和初速,不同的炮弹也会有不同的穿甲能力。
如你所说,也许欧肯对1式弹的了解不多,所以他对94的穿深进行的是91式的计算,而且也在表上注明是91弹。这恰好也显得这套数据更严谨。

战后的研究中,炮虽然有可能因残缺而无法开火,但缴获的各种资料、俘虏的相关技术人员的供词,可以精确地还原炮口参数。
缴获的炮弹就更容易推测其效能了。

下士

十二年服役纪念章旗手

发表于 2013-1-11 20:42 | 显示全部楼层
但最荒谬最让人接受不了的地方在于不少项目上Mk1居然比Mk7强,除非也是以前者的药室容积进行强装药射击,但即使如此相对于几乎可以抗衡早期457毫米主炮的Mk7也不可能有可比性
但最主要的问题不在于94如何,而在于德日英美之间都出现了在一些局部上小口径火炮甚至超过大口径,或者说德国两款主炮对比和英美两国两种主炮的对比就显然是最大硬伤了
不过还说回94,有些困难,如果能够相对粗略的测试,那么94炮各种距离的角度和穿深就该在NW词条下那样的资料大量显示,显然,样本残破,资料大量被焚毁是一个重要因素,这些综合加在一起才导致数据的部分明显缺失,对于准确推算显然不利

军士长

十二年服役纪念章全球架空纪念章旗手

发表于 2013-1-11 20:54 | 显示全部楼层
有段没来,这帖子内容好颠覆啊...SKC34雄起了,壮哉我大RM更是...
我曾经试图抓住星辰,现在,我死了。

中士

十一年服役纪念章

发表于 2013-1-11 21:35 | 显示全部楼层
克虏伯火炮 发表于 2013-1-11 10:31
但有一种说法是,各种装甲的相对效能与厚度有关,180毫米以下是Class A最好、220-350毫米KC n/A最好、350以 ...

我个人感觉奇怪的是居然有把渗碳深度用百分比来标注,敢问300MM的装甲钢去渗碳,按你说的Class A的计算近160mm的渗碳深度,那么160mm的渗碳装甲还有必要么,干脆冶炼时就提高相应的含碳比例。
还有美国的Class A应该是渗碳深度最差的一款装甲属于哈维装甲。

中将

十二年服役纪念章TIME TRAVELER一级铁十字勋章元老荣誉纪念章行政立法委旗手终身荣誉会员

发表于 2013-1-11 21:39 | 显示全部楼层
沼泽 发表于 2013-1-11 21:35
我个人感觉奇怪的是居然有把渗碳深度用百分比来标注,敢问300MM的装甲钢去渗碳,按你说的Class A的计算近 ...


当时美国为了抵御硬质被帽的侵彻,在表面硬化装甲方面走上了误区,认为这样大厚度的硬化是有必要的。
基材含碳量不宜过高,因为这会降低基材的延伸率,从而降低消耗炮弹动能的能力。

中士

十一年服役纪念章

发表于 2013-1-11 21:39 | 显示全部楼层
风之旋律 发表于 2013-1-11 14:02
偶有个问题,装甲板可否采用冷锻方式,众所周知,冷锻出来的东西,相当结实,但是缺点就是太费时费力,但是 ...

锻造装甲,有意思,请问是渗碳后锻造还是渗碳前锻造。怎么锻造,动辄300mm装甲去锻造本就不用塑型,德国保时捷虎王的炮台前部装甲进行的是锻造塑型,就用了多套锻模才敲成那样的。

中士

十一年服役纪念章

发表于 2013-1-11 21:52 | 显示全部楼层
本帖最后由 沼泽 于 2013-1-11 21:54 编辑
克虏伯火炮 发表于 2013-1-11 10:17
对法国装甲,欧肯给的评价比较高,说从1912年添加了钼元素,改善制造过程,是一战期间最好的装甲。
二战 ...


对于法国装甲还是不要抱太大期望,欧洲装甲技术大家都同出一面克虏伯,法国可能是第一个购买KC装甲生产专利的国家(不知道奥匈什么时候购买的技术)如果在往下排第二个应该是俄国,意大利之后是英国,再后是日本(当年英国人用日本做实验发现自己用的哈维不如给日本生产的KC之后的事就是费老爹推动英国全面采用KC)

中士

十一年服役纪念章

发表于 2013-1-11 21:59 | 显示全部楼层
本帖最后由 沼泽 于 2013-1-11 22:30 编辑
克虏伯火炮 发表于 2013-1-11 21:39
当时美国为了抵御硬质被帽的侵彻,在表面硬化装甲方面走上了误区,认为这样大厚度的硬化是有必要的。
基 ...


大厚度的硬化也不能用百分比进行表示,渗碳深度由渗碳工艺和渗碳时间决定的,渗碳不可能达到那么厚,美国渗碳技术用的是哈维装甲用木炭做原料,和德国的克虏伯气体渗碳工艺不同渗碳速度和渗碳深度都比用kC的差。
PS:
其实在navweaps里面就有渗碳装甲的说明

DECREMENTAL HARDENING: This is a special form of quenching/chilling designed to get a deep, gradually-softening face on a face-hardened plate. Grüson Chilled Cast Iron armor formed its face using the chilling process, which was possible because of the very high Carbon content of the cast iron allowing rather rapid hardening. However, armor steels use rather low amounts of Carbon to prevent brittleness, so deep hardening is only possible by the use of alloying elements--primarily Chromium, though Molybdenum was used extensively after World War I in addition to Chromium--that slow down the transformation of austenite to ferrite, allowing martensite to form deeper in the plate where the cooling rate is slower, and that form additional carbides to increase the hardness by more efficiently using the existing Carbon. Nickel was also of use here, since it toughened steel considerably and allowed higher hardnesses to be used while keeping the toughness above the minimum required. This process applied to steel was introduced by Krupp in 1894 as his famous Krupp Cemented face-hardened armor (later called KRUPP CEMENTED "OLD TYPE"--abbreviated "KC a/A" (see below)--in Germany after World War I to separate it from the post-World War I improved KC "NEW TYPE" ("KC n/A" (see below)) developed by Krupp during the late 1920's and early 1930's) and in less than a decade had made all other forms of full-strength armor steel obsolete when used for the primary protection of warships and, later, armored land vehicles--including all previous homogeneous metal armors because his new Chromium-Nickel-Steel was harder and tougher and thus more resistant than the older Nickel-Steel. It was originally combined with the cementing process, but a few face-hardened armors dispensed with cementing and successfully (or not) employed decremental hardening by itself. Except for a final, post-hardening temper (not always used in early KC-type armors) and minor machining, the decremental hardening process was the last heat treatment applied to a KC-type face-hardened Chromium-Nickel-Steel armor plate. The plate was completely heat treated for optimum crystal structure, mechanically worked (hammered, rolled, and forged), cemented (if used), and shaped to as close to its final form as possible, then laid flat and packed around the edges with an insulating layer of sand or loam, so only its face and back surfaces were exposed. Any portions of the face where holes were to be cut were covered with thick insulation (usually asbestos) to reduce both the rates of heating and of cooling and thus prevent hardening when quenched. All temperatures and times used were carefully regulated using data from previous tests and production runs. The plate was run into an oven and raised slowly to an even red hot temperature below the CHT, then the face surface only was evenly blasted by flaming jets to raise it to a much higher white hot temperature and the plate allowed to soak in this condition for a specified time, depending on the plate size and thickness. The CHT would gradually move into the plate in a flat front and when the timer indicated that it had reached the desired depth (which varied considerably between manufacturers and date made over a wide range), the plate would be removed from the oven and either both the face and back would be sprayed with high pressure water cold (original Krupp technique) or the plate would first undergo dipping of the face in water and/or oil (British Vickers KC-type armor manufactured prior to World War I, for example) prior to the final water quench. The result was a "decrementally hardened" or "deep" face layer of circa 500 Brinell (535 Brinell is the hardest I know of, and not in a normal prodcution plate) just behind the cemented layer (if used), dropping off gradually in hardness to the level of the unhardened back in one of several ways, depending on the final face and back temperatures, the heating time, and the plate's metallurgical makeup. The original KC a/A armor had the deep face layer's hardness drop off with increasing depth in either a straight line or a "ski-slope" (a rapid, ramp-like drop in the middle of the face layer, but slow near the surface and near the unhardened back, like a child's slide) to about 350 Brinell at about 20% into the plate from the face surface. At this point the drop in hardness would become much steeper in another ski-slope--the transition layer--until it merged with the back layer's circa 225 Brinell hardness at 33-35% of the plate from the surface of the face, being a constant hardness from there to the back surface of the plate. Except for the sudden drop in hardness at the back of the cemented layer (if used) of from 650-700 Brinell to the circa 500 Brinell level, in no place was there any sudden change in hardness, though there was the relatively sudden change in the rate that the hardness was dropping at the boundary of the deep face layer and the transition layer. The cemented layer/deep face layer combined is also called the undrillable portion of the face, while the entire cemented layer, deep face layer, and transition layer combined is called the chill or, loosely, the face, though this can be confused with the more limited scope deep face layer part of the undrillable portion of the chill. The width of the undrillable chill portion, the width of the transition layer, the hardness level where the transition layer begins, and the average hardness of the back layer were all changed slightly or considerably by later adopters of this process, including, after World War I, by Krupp itself. KC n/A armor increased the back layer hardness to 240 Brinell (the maximum used by anyone); increased the depth of the chill to 41% (very exact value); and adjusted the hardness drop in the undrillable chill layer to exactly match the transition layer drop so that the chill went from about 500 Brinell just behind the cemented layer in a single straight line or gradually-flattening curve, making the point where the transition layer starts invisible (it should be when the hardness drops to somewhere around 350 Brinell, depending on whose definition of "undrillable" you use!). This armor was tempered and was much superior to KC a/A in every way. In other face-hardened plates, the deep face layer hardness stays constant for some depth and then begins to decrease in a ski-slope (deep face layer/transition layer boundary again somewhat arbitrarily specified) or in a very sudden drop (essentially no transition layer at all). U.S. Navy BETHLEHEM THIN CHILL Class "A" armor (see below) was unusual in that it had essentially no deep face layer, with the drop in hardness being so steep behind the cemented layer that the cemented layer itself became the entire face and only a narrow, very steep transition layer not much thicker than the cemented layer connecting the cemented layer with the back layer, while U.S. Navy MIDVALE NON-CEMENTED Class "A" armor (see below) had a extreme chill depth of over 80% of the plate. The depth of the chill (actually the thickness of the unhardened back layer as a percent of the total plate thickness) is important not only for damaging projectiles, but also because the hard chill always fails by breaking (brittle fracture) and this is a surface phenomenon, as opposed to ductile tearing, where the entire volume of armor is distorted and pushed aside by the projectile as it penetrates (see SCALING on page 3). Due to the difficulty of precisely controlling temperature and due to the use of the circa-1"-thick cemented surface layer in most KC-type armors, the minimum plate thickness for the deep face process described above was usually circa 4" (102mm) or greater (6" (15.2cm) for Japanese World War I-era VICKERS CEMENTED armor, for example), though Krupp and Witkowitz originally made their KC armors down to 3.2" (8cm) up through the end of World War I--even they increased the minimum to 4" after World War I.

少将

外务总督

十一年服役纪念章

发表于 2013-1-11 22:43 | 显示全部楼层
鸦片鬼的MK1也许并不奇怪,首先我们应该刨掉有角度的着弹,先分析一下10度着角以内近似垂直穿透无限靶的情形,把弹头系数都弄出来。
demarre公式在这个范围内是适用的,但要注意一下K值,对K值的处理千万要小心,一个弹一个板,一个着角一个速度只能对应一个K值。拉出去普世是要出大问题的。

手机版|Archiver|© 2010-2025 战列舰 warships.com.cn, All Rights Reserved ( 沪ICP备13004737号 )

GMT+8, 2025-5-2 03:10 , Processed in 0.024059 second(s), 19 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表